Tulisan ini terinspirasi gara-gara Vivi yang bingung perbedaan penggunaan dari accuracy, precision & recall.
Dalam “dunia” pengenalan pola (pattern recognition) dan temu kembali informasi (information retrieval), precision dan recall adalah dua perhitungan yang banyak digunakan untuk mengukur kinerja dari sistem / metode yang digunakan. Precision adalah tingkat ketepatan antara informasi yang diminta oleh pengguna dengan jawaban yang diberikan oleh sistem. Sedangkan recall adalah tingkat keberhasilan sistem dalam menemukan kembali sebuah informasi.
Sedangkan di “dunia lain” seperti dunia statistika dikenal juga istilah accuray. Accuracy didefinisikan sebagai tingkat kedekatan antara nilai prediksi dengan nilai aktual. Ilustrasi berikut ini memberikan gambaran perbedaan antara accuracy dan precision.
Agar lebih jelas, mari kita bahas dengan menggunakan contoh.
Misalkan kita ingin mengukur kinerja dari sebuah mesin pemisah ikan yang bertugas memisahkan ikan-ikan salmon dari semua ikan yang telah didapat. Untuk mengujinya kita akan memasukkan 100 ikan salmon dan 900 ikan lain (bukan ikan salmon). Hasilnya mesin tersebut memisahkan 110 yang dideteksi sebagai ikan salmon. Ke 110 ikan tersebut kemudian dicek kembali oleh manusia, ternyata dari 110 ikan tersebut hanya 90 ekor yang merupakan ikan salmon, sedangkan 20 lainnya merupakan ikan lain.
Dari kasus tersebut maka kita dapat simpulkan bahwa mesin tersebut memiliki precision sebesar 82%, recall sebesar 90% dan accuracy sebesar 97% yang didapatkan dari perhitungan berikut: Continue reading